A GNAS1 imprinting defect in pseudohypoparathyroidism type IB.

نویسندگان

  • J Liu
  • D Litman
  • M J Rosenberg
  • S Yu
  • L G Biesecker
  • L S Weinstein
چکیده

Pseudohypoparathyroidism type IB (PHPIB) is characterized by renal resistance to parathyroid hormone (PTH) and the absence of other endocrine or physical abnormalities. Familial PHPIB has been mapped to 20q13, near GNAS1, which encodes G(s)alpha, the G protein alpha-subunit required for receptor-stimulated cAMP generation. However, G(s)alpha function is normal in blood cells from PHPIB patients, ruling out mutations within the G(s)alpha coding region. In mice G(s)alpha is expressed only from the maternal allele in renal proximal tubules (the site of PTH action) but is biallelically expressed in most other tissues. Studies in patients with Albright hereditary osteodystrophy suggest a similar G(s)alpha imprinting pattern in humans. Here we identify a region upstream of the G(s)alpha promoter that is normally methylated on the maternal allele and unmethylated on the paternal allele, but that is unmethylated on both alleles in all 13 PHPIB patients studied. Within this region is an alternative promoter and first exon (exon 1A), generating transcripts that are normally expressed only from the paternal allele, but that are biallelically expressed in PHPIB patients. Therefore, PHPIB is associated with a paternal-specific imprinting pattern of the exon 1A region on both alleles, which may lead to decreased G(s)alpha expression in renal proximal tubules. We propose that loss of exon 1A imprinting is the cause of PHPIB.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudohypoparathyroidism type Ib with disturbed imprinting in the GNAS1 cluster and Gsalpha deficiency in platelets.

Pseudohypoparathyroidism Ib (PHPIb), characterized by parathyroid hormone-resistant hypocalcemia and hyperphosphatemia, is caused by a deregulation in the imprinting status of the GNAS1 cluster, comprising exons XL, NESP55 and 1A and the coding exons of Gsalpha. Differences in methylation of exon 1A and sporadically also of exons XL and NESP55 were found and thought to result in long-range effe...

متن کامل

Discordance between genetic and epigenetic defects in pseudohypoparathyroidism type 1b revealed by inconsistent loss of maternal imprinting at GNAS1.

Although the molecular basis of pseudohypoparathyroidism type 1b (PHP type 1b) remains unknown, a defect in imprinting at the GNAS1 locus has been suggested by the consistent finding of paternal-specific patterns of DNA methylation on maternally inherited GNAS1 alleles. To characterize the relationship between the genetic and epigenetic defects in PHP type 1b, we analyzed allelic expression and...

متن کامل

Selective resistance to parathyroid hormone caused by a novel uncoupling mutation in the carboxyl terminus of G alpha(s). A cause of pseudohypoparathyroidism type Ib.

G(s) is a heterotrimeric (alpha, beta, and gamma chains) G protein that couples heptahelical plasma membrane receptors to stimulation of adenylyl cyclase. Inactivation of one GNAS1 gene allele encoding the alpha chain of G(s) (G alpha(s)) causes pseudohypoparathyroidism type Ia. Affected subjects have resistance to parathyroid hormone (PTH) and other hormones that activate adenylyl cyclase plus...

متن کامل

Distinct patterns of abnormal GNAS imprinting in familial and sporadic pseudohypoparathyroidism type IB.

Pseudohypoparathyroidism type IB (PHPIB) is associated with abnormal imprinting of GNAS, the gene encoding the heterotrimeric G protein Gsalpha and other alternative products. The gene contains three differentially methylated regions (DMRs) located upstream of the Gsalpha promoter (from upstream to downstream): the paternally methylated NESP55 promoter region, the maternally methylated NESP ant...

متن کامل

Genetic basis for resistance to parathyroid hormone.

Pseudohypoparathyroidism (PHP) is associated with biochemical hypoparathyroidism (i.e. hypocalcemia and hyperphosphatemia) due to parathyroid hormone (PTH) resistance rather than to PTH deficiency. Patients with PHP type 1a have a generalized form of hormone resistance plus a constellation of developmental defects termed Albright hereditary osteodystrophy (AHO). Within PHP type 1a families some...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 106 9  شماره 

صفحات  -

تاریخ انتشار 2000